

OVERVIEW

SERIE KU9

KU9: serie di diffusori a coni per soffitto, con diametro da 100 a 315mm, composti da un cono esterno e da una sezione centrale regolabile a cono unico che può essere regolato per lancio orizzontale o verticale.

CARATTERISTICHE:

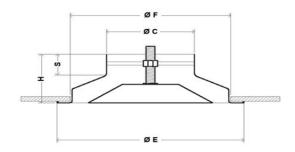
Cono esterno in alluminio per le versioni standard, in acciaio per le versioni con pannello, cono centrale in lamiera d'acciaio, vite di regolazione in acciaio.

Finitura standard verniciata bianco RAL 9010 o RAL 9003, verniciature diverse su richiesta.

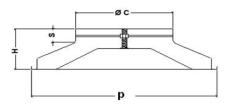
I diffusori della serie KU9 vengono normalmente fissati al plenum mediante viti laterali.

In alternativa la condotta flessibile può essere collegata direttamente al collo del diffusore.

CAMPO DI UTILIZO E REGOLAZIONE


I diffusori KU9 sono adatti per l'installazione a controsoffitto in ambienti con altezza compresa tra 2,5 e 5 metri, come uffici, negozi, sale riunioni, corridoi, ambulatori e simili.

Sono adatti sia per la mandata che per la ripresa dell'aria.


Abbassando il cono centrale è possibile avere l'uscita dell'aria lungo il soffitto con lancio orizzontale.

Questa regolazione è indicata soprattutto per l'uso in raffrescamento, ma garantisce buone condizioni anche per l'uso in riscaldamento quando nel locale è presente più di un diffusore.

Alzando il cono centrale è possibile lanciare l'aria verso il basso. Questa regolazione è indicata per l'utilizzo in solo riscaldamento o in ripresa.

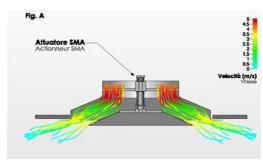
Standard

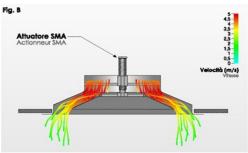
con pannello

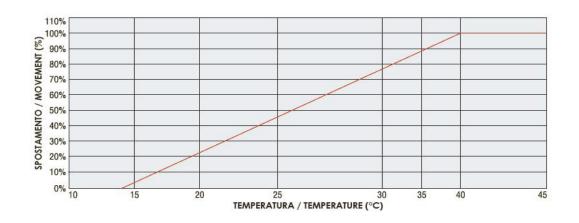
misura nominale	С	E	Н	S	F	Р	Ak lancio orizzontale	Ak lancio verticale	
mm	mm	mm	mm	mm	mm	mm	m²	m²	
100	98	230	75	70	198	596	0,0080	0,00752	
150	148	335	105	100	288	596	0,0130	0,01310	
160	158	335	105	100	288	596	0,0160	0,01630	
200	198	423	118	110	370	596	0,0223	0,02360	
250	248	517	130	120	461	596	0,0363	0,03990	
300	298	640	146	126	576	596	0,0600	0,06804	
315	313	640	146	126	576	596	0,0710	0,08119	

SERIE KU9 CT

VERSIONE A REGOLAZIONE AUTOMATICA TRAMITE MOLLA TERMOSTATICA


I diffusori KU9 CT consentono la regolazione automatica dei coni nella posizione estiva o invernale senza alcun intervento da parte dell'operatore.


Essi funzionano senza energia ausiliaria (es. alimentazione elettrica) e non necessitano di alcuna manutenzione. Il controllo del movimento dei coni intermedi avviene per mezzo di una molla a memoria di forma il cui ciclo di funzionamento determina la posizione dei coni in funzione della temperatura. Si ha così un controllo del flusso d'aria in funzione della temperatura, permettendodi avere il cono centrale del diffusore sempre in posizione ottimale, sia nella fase di raffrescamento che nella fase di riscaldamento.


La molla a memoria di varia la sua estensione in un campo di temperatura compreso tra 14°C e 40°C

Il tempo minimo di durata della molla è di 100000 cicli. Un ciclo è dato da una estensione seguita da una compressione della molla. Se, per esempio, consideriamo di essere nella condizione di avviare l'impianto al mattino e di staccarlo la sera, la durata media della molla è circa 270 anni.

Il disegno indica le due posizioni di fine corsa, la pos. 0% in condizione di raffrescamento e la pos. 100% in condizione di riscaldamento.

SERIE KU9

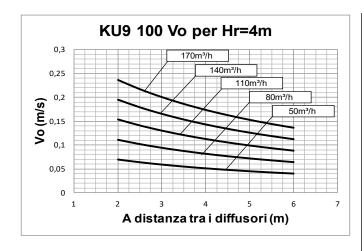
SELEZIONE RAPIDA

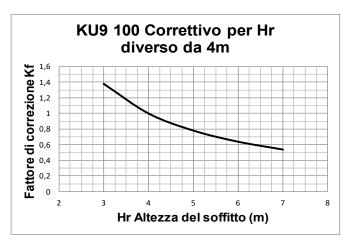
		Portata d'aria																		
Modell	Modellp		75	100	125	150	200	250	300	350	400	500	600	800	1000	1200	1400	1600	1800	2000
A _k [m²]	A _k [m²]		(21)	(28)	(35)	(42)	(56)	(69)	(83)	(97)	(111)	(139)	(167)	(222)	(278)	(333)	(389)	(444)	(500)	(556)
	L_{WA}	[dB(A)	<20	26	32	36	44	49												
KU9	V_k	[m/s]	2,6	3,5	4,4	5,3	7	8,6												
100	Δp_t	[Pa]	6	10	16	23	41	63												
(0,008)	L 0,2	[m]	1,7	2,2	2,7	3,2	4,1	5												
	L_{WA}	[dB(A)		<20	20	25	32	37	42	46	49									
KU9	V_k	[m/s]		2,2	2,7	3,2	4,3	5,3	6,4	7,5	8,5									
150	Δp_t	[Pa]		3	4	6	10	15	22	30	40									
(0,013)	L 0,2	[m]		1,7	2,1	2,5	3,1	3,7	4,4	5	5,6									
	L_{WA}	[dB(A)		<20	<20	20	27	32	37	41	44	50								
KU9	V_k	[m/s]		1,8	2,2	2,6	3,5	4,3	5,2	6,1	6,9	8,7								
160	Δp_t	[Pa]		2	3	5	8	12	18	24	32	50								
(0,016)	L 0,2	[m]		1,6	1,9	2,2	2,8	3,4	3,9	4,5	5	6								
	L_{WA}	[dB(A)				<20	21	25	30	34	37	42	46							
KU9	V_k	[m/s]				1,9	2,5	3,1	3,7	4,3	5	6,2	7,5							
200	Δp_t	[Pa]				2	4	5	8	11	14	22	32							
(0,022)	L 0,2	[m]				1,9	2,4	2,9	3,3	3,8	4,2	5	5,9							
	L_{WA}	[dB(A)					<20	<20	22	25	28	33	37	43	48					
KU9	V_k	[m/s]					1,5	1,9	2,3	2,7	3,1	3,8	4,6	6,1	7,7					
250	Δp_t	[Pa]					2	3	4	6	7	12	17	30	47					
(0,036)	L 0,2	[m]					2	2,3	2,7	3	3,4	4	4,7	5,8	6,9					
	L_{WA}	[dB(A)					<20	<20	<20	21	24	28	31	36	40	43	46	48		
KU9	V_k	[m/s]					0,9	1,2	1,4	1,6	1,9	2,3	2,8	3,7	4,6	5,6	6,5	7,4		
300	Δp_t	[Pa]					1	1	2	3	4	6	8	14	22	32	44	57		
(0,06)	L 0,2	• •					1,7	2	2,3	2,5	2,8	3,3	3,8	4,7	5,6	6,4	7,2	7,9		
	L_{WA}	[dB(A)					<20	<20	<20	22	24	28	30	35	39	42	44	46	48	50
KU9	V_k	[m/s]					0,8	1	1,2	1,4	1,6	2	2,4	3,1	3,9	4,7	5,5	6,3	7	7,8
315	Δp_t	[Pa]					1	1	2	2	3	4	6	11	18	26	35	46	58	71
(0,071)	L 0,2	[m]					1,6	1,9	2,1	2,4	2,6	3,1	3,6	4,4	5,2	6	6,7	7,4	8,1	8,7

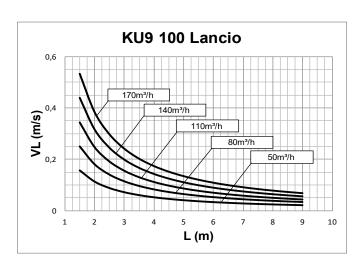
30 ≤ LwA < 40 40 ≤ LwA < 50 10 ≤ LwA < 30

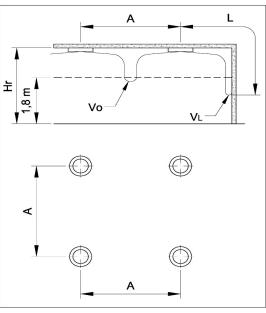
<u>Dati validi per:</u>

- Aria in mandata
- Condizioni isotermiche
- Lancio con effetto soffitto

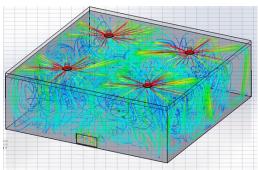

<u>Terminologia</u>


- A_k = sezione efficace V_k = velocità nella sezione efficace
- Δpt = perdita di carico totale
- L_{WA} = potenza sonora



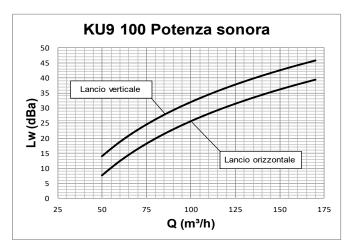

PERFORMANCE KU9 100

SERIE KU9



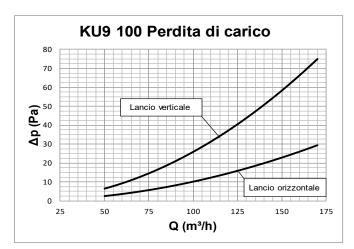
Dati ricavati da modellazione matematica CFD in camera di prova virtuale operando in condizioni isotermiche in accordo con la norma internazionale: ISO 5219 1984: Air distribution and air diffusion - Laboratory. Aerodynamic testing and rating of air terminal devices.

A (m) distanza tra i diffusori Vo (m/s) velocità al limite della zona occupata L (m) distanza orizzontale in metri dal centro del diffusore


VL (m/s) velocità massima dell'aria nella vena alla distanza L

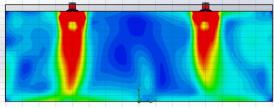
PERFORMANCE KU9 100

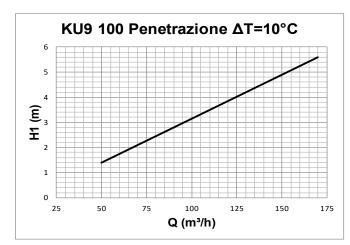
SERIE KU9



Dati misurati in camera riverberante in accordo con le norme internazionali:

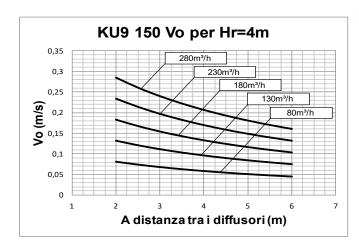
ISO 3741 1999: Acoustic - determination of sound power levels of noise sources using sound pressure - Precision methods for reverberation rooms

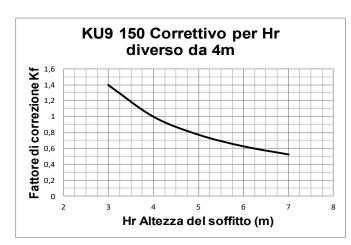

ISO 5135 1997: Acoustic - determination of sound power levels of noise from air-terminal devices; air terminal units; dampers and valves by measurement in a reverberation room.

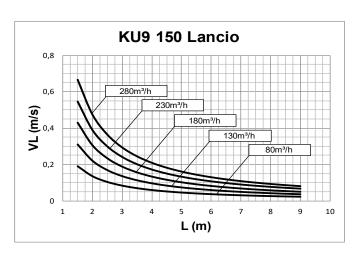

I dati esposti non considerano l'attenuazione dovuta all'ambiente di installazione. Tale attenuazione è normalmente compresa tra 6 e 10dBa ed è determinata dalle dimensioni dell'ambiente, dalla forma dell'ambiente e dalle caratteristiche

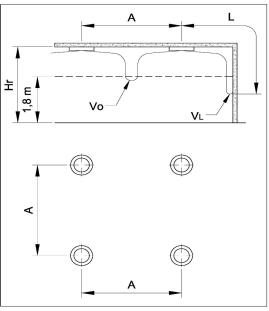
Dati ricavati da modellazione matematica CFD in camera di prova virtuale operando in accordo con la norma internazionale:

ISO 5219 1984: Air distribution and air diffusion - Laboratory. Aerodynamic testing and rating of air terminal devices.

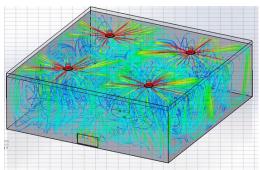

Dati ricavati da modellazione matematica CFD in camera di prova virtuale operando in condizioni di riscaldamento con $\Delta T=10^{\circ}C$ in accordo con la norma internazionale:


ISO 5219 1984: Air distribution and air diffusion - Laboratory. Aerodynamic testing and rating of air terminal devices.



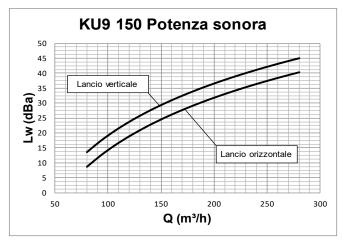

SERIE KU9

PERFORMANCE KU9 150



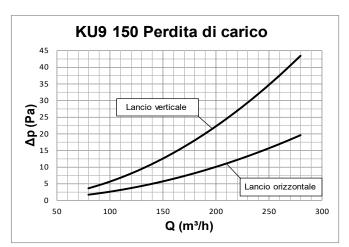
Dati ricavati da modellazione matematica CFD in camera di prova virtuale operando in condizioni isotermiche in accordo con la norma internazionale: ISO 5219 1984: Air distribution and air diffusion - Laboratory. Aerodynamic testing and rating of air terminal devices.

A (m) distanza tra i diffusori Vo (m/s) velocità al limite della zona occupata L (m) distanza orizzontale in metri dal centro del diffusore


VL (m/s) velocità massima dell'aria nella vena alla distanza L

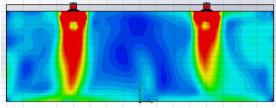
PERFORMANCE KU9 150

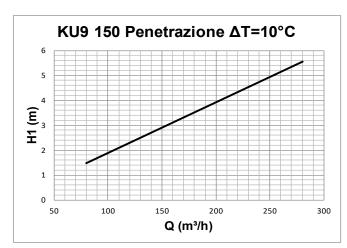
SERIE KU9



Dati misurati in camera riverberante in accordo con le norme internazionali:

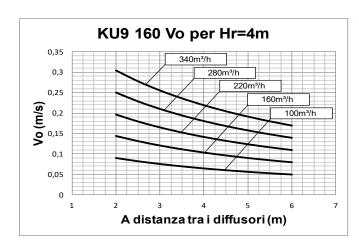
ISO 3741 1999: Acoustic - determination of sound power levels of noise sources using sound pressure - Precision methods for reverberation rooms

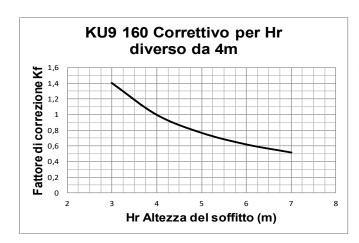

ISO 5135 1997: Acoustic - determination of sound power levels of noise from air-terminal devices; air terminal units; dampers and valves by measurement in a reverberation room.

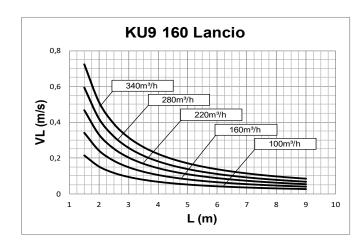

I dati esposti non considerano l'attenuazione dovuta all'ambiente di installazione. Tale attenuazione è normalmente compresa tra 6 e 10dBa ed è determinata dalle dimensioni dell'ambiente, dalla forma dell'ambiente e dalle caratteristiche

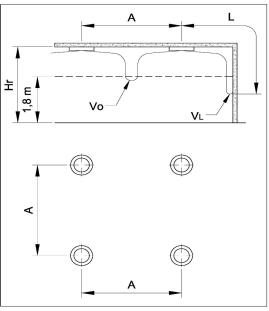
Dati ricavati da modellazione matematica CFD in camera di prova virtuale operando in accordo con la norma internazionale:

ISO 5219 1984: Air distribution and air diffusion - Laboratory. Aerodynamic testing and rating of air terminal devices.

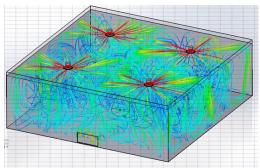

Dati ricavati da modellazione matematica CFD in camera di prova virtuale operando in condizioni di riscaldamento con $\Delta T=10^{\circ}C$ in accordo con la norma internazionale:


ISO 5219 1984: Air distribution and air diffusion - Laboratory. Aerodynamic testing and rating of air terminal devices.



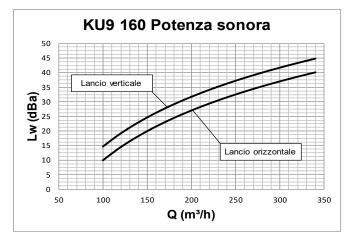

SERIE KU9

PERFORMANCE KU9 160



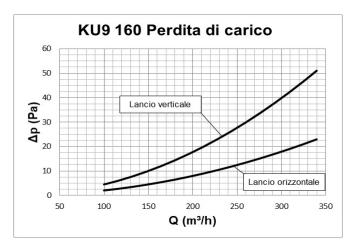
Dati ricavati da modellazione matematica CFD in camera di prova virtuale operando in condizioni isotermiche in accordo con la norma internazionale: ISO 5219 1984: Air distribution and air diffusion - Laboratory. Aerodynamic testing and rating of air terminal devices.

A (m) distanza tra i diffusori Vo (m/s) velocità al limite della zona occupata L (m) distanza orizzontale in metri dal centro del diffusore


VL (m/s) velocità massima dell'aria nella vena alla distanza L

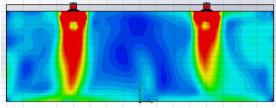
PERFORMANCE KU9 160

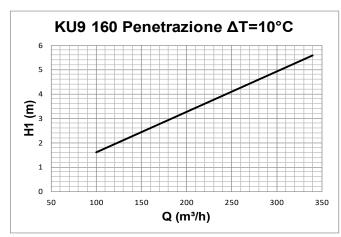
SERIE KU9



Dati misurati in camera riverberante in accordo con le norme internazionali:

ISO 3741 1999: Acoustic - determination of sound power levels of noise sources using sound pressure - Precision methods for reverberation rooms


ISO 5135 1997: Acoustic - determination of sound power levels of noise from air-terminal devices; air terminal units; dampers and valves by measurement in a reverberation room.

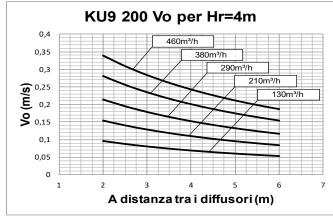

I dati esposti non considerano l'attenuazione dovuta all'ambiente di installazione. Tale attenuazione è normalmente compresa tra 6 e 10dBa ed è determinata dalle dimensioni dell'ambiente, dalla forma dell'ambiente e dalle caratteristiche

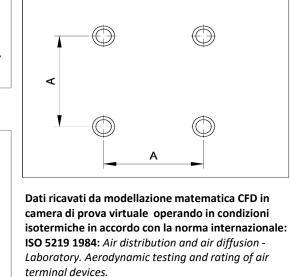
Dati ricavati da modellazione matematica CFD in camera di prova virtuale operando in accordo con la norma internazionale:

ISO 5219 1984: Air distribution and air diffusion - Laboratory. Aerodynamic testing and rating of air terminal devices.

Dati ricavati da modellazione matematica CFD in camera di prova virtuale operando in condizioni di riscaldamento con $\Delta T=10^{\circ}C$ in accordo con la norma internazionale:

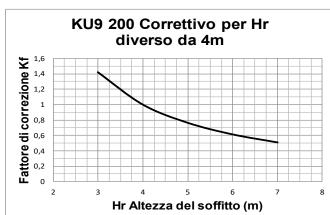
ISO 5219 1984: Air distribution and air diffusion - Laboratory. Aerodynamic testing and rating of air terminal devices.

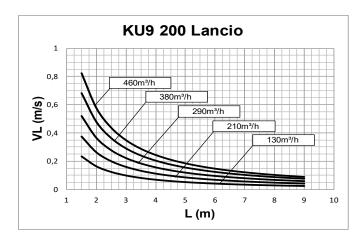

PERFORMANCE KU9 200

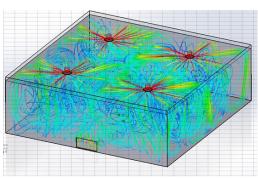

눈

1,8 m

SERIE KU9

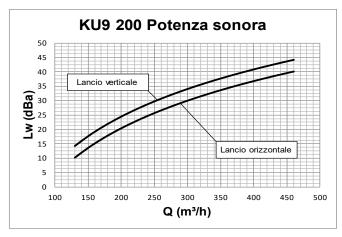

L


Vo


Α

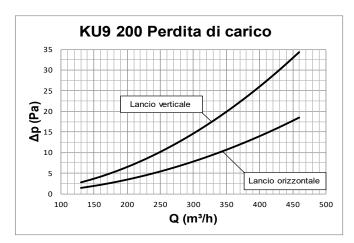
A (m) distanza tra i diffusori Vo (m/s) velocità al limite della zona occupata L (m) distanza orizzontale in metri dal centro del diffusore

VL (m/s) velocità massima dell'aria nella vena alla distanza L



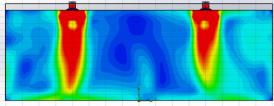
PERFORMANCE KU9 200

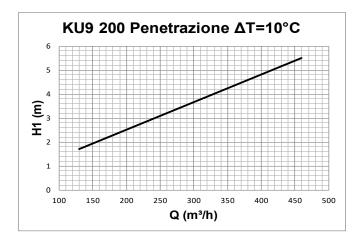
SERIE KU9



Dati misurati in camera riverberante in accordo con le norme internazionali:

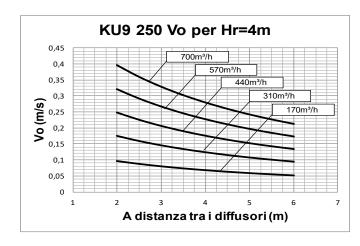
ISO 3741 1999: Acoustic - determination of sound power levels of noise sources using sound pressure - Precision methods for reverberation rooms

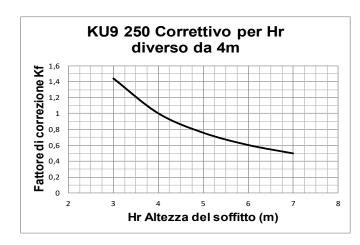

ISO 5135 1997: Acoustic - determination of sound power levels of noise from air-terminal devices; air terminal units; dampers and valves by measurement in a reverberation room.

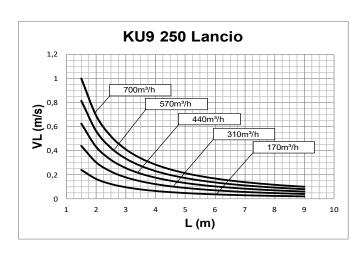

I dati esposti non considerano l'attenuazione dovuta all'ambiente di installazione. Tale attenuazione è normalmente compresa tra 6 e 10dBa ed è determinata dalle dimensioni dell'ambiente, dalla forma dell'ambiente e dalle caratteristiche

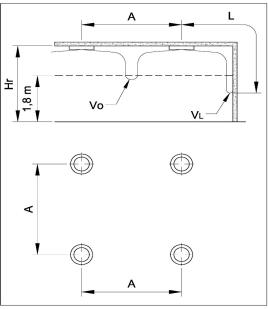
Dati ricavati da modellazione matematica CFD in camera di prova virtuale operando in accordo con la norma internazionale:

ISO 5219 1984: Air distribution and air diffusion - Laboratory. Aerodynamic testing and rating of air terminal devices.

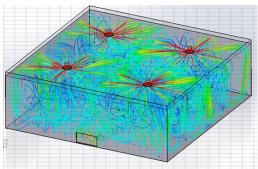

Dati ricavati da modellazione matematica CFD in camera di prova virtuale operando in condizioni di riscaldamento con $\Delta T=10^{\circ}C$ in accordo con la norma internazionale:


ISO 5219 1984: Air distribution and air diffusion - Laboratory. Aerodynamic testing and rating of air terminal devices.



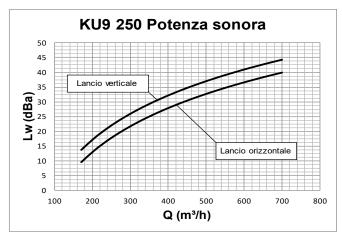

SERIE KU9

PERFORMANCE KU9 250



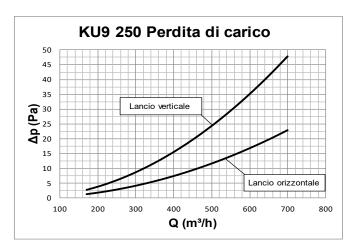
Dati ricavati da modellazione matematica CFD in camera di prova virtuale operando in condizioni isotermiche in accordo con la norma internazionale: ISO 5219 1984: Air distribution and air diffusion - Laboratory. Aerodynamic testing and rating of air terminal devices.

A (m) distanza tra i diffusori Vo (m/s) velocità al limite della zona occupata L (m) distanza orizzontale in metri dal centro del diffusore


VL (m/s) velocità massima dell'aria nella vena alla distanza L

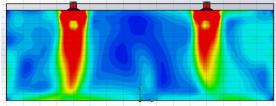
PERFORMANCE KU9 250

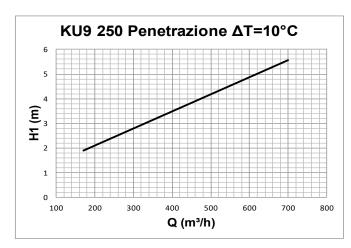
SERIE KU9



Dati misurati in camera riverberante in accordo con le norme internazionali:

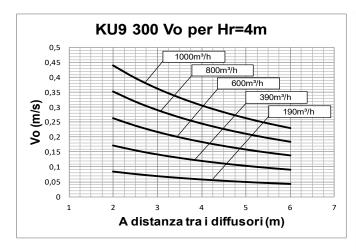
ISO 3741 1999: Acoustic - determination of sound power levels of noise sources using sound pressure - Precision methods for reverberation rooms

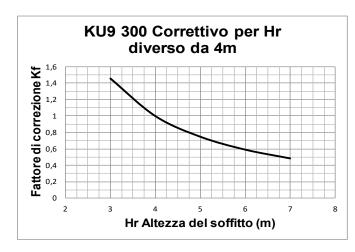

ISO 5135 1997: Acoustic - determination of sound power levels of noise from air-terminal devices; air terminal units; dampers and valves by measurement in a reverberation room.

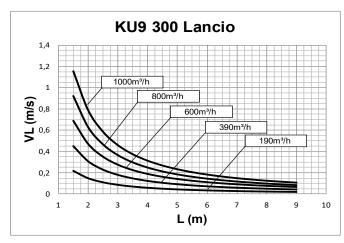

I dati esposti non considerano l'attenuazione dovuta all'ambiente di installazione. Tale attenuazione è normalmente compresa tra 6 e 10dBa ed è determinata dalle dimensioni dell'ambiente, dalla forma dell'ambiente e dalle caratteristiche

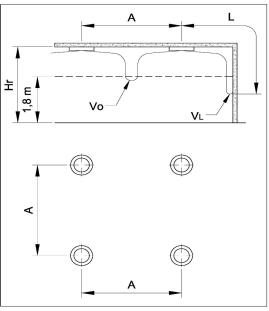
Dati ricavati da modellazione matematica CFD in camera di prova virtuale operando in accordo con la norma internazionale:

ISO 5219 1984: Air distribution and air diffusion - Laboratory. Aerodynamic testing and rating of air terminal devices.

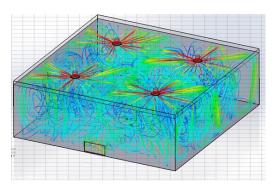

Dati ricavati da modellazione matematica CFD in camera di prova virtuale operando in condizioni di riscaldamento con $\Delta T=10^{\circ}C$ in accordo con la norma internazionale:


ISO 5219 1984: Air distribution and air diffusion - Laboratory. Aerodynamic testing and rating of air terminal devices.



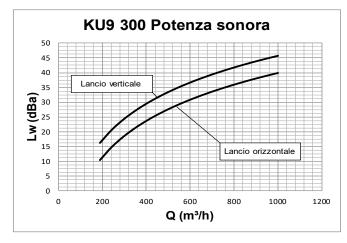

PERFORMANCE KU9 300

SERIE KU9



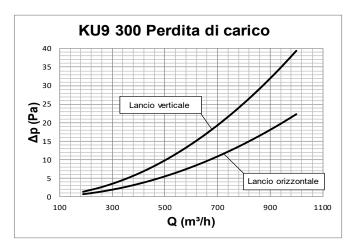
Dati ricavati da modellazione matematica CFD in camera di prova virtuale operando in condizioni isotermiche in accordo con la norma internazionale: ISO 5219 1984: Air distribution and air diffusion - Laboratory. Aerodynamic testing and rating of air terminal devices.

A (m) distanza tra i diffusori Vo (m/s) velocità al limite della zona occupata L (m) distanza orizzontale in metri dal centro del diffusore


VL (m/s) velocità massima dell'aria nella vena alla distanza L

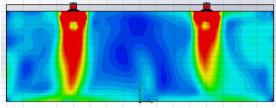
PERFORMANCE KU9 300

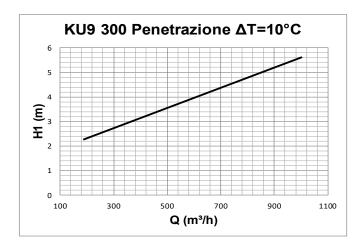
SERIE KU9



Dati misurati in camera riverberante in accordo con le norme internazionali:

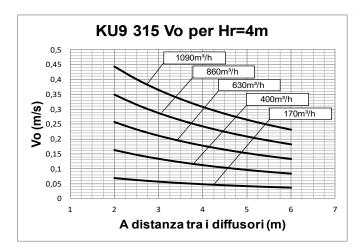
ISO 3741 1999: Acoustic - determination of sound power levels of noise sources using sound pressure - Precision methods for reverberation rooms

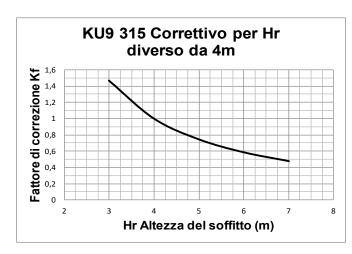

ISO 5135 1997: Acoustic - determination of sound power levels of noise from air-terminal devices; air terminal units; dampers and valves by measurement in a reverberation room.

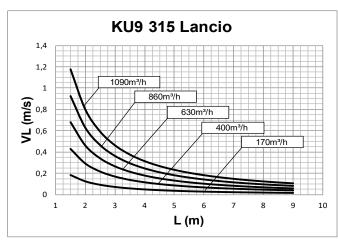

I dati esposti non considerano l'attenuazione dovuta all'ambiente di installazione. Tale attenuazione è normalmente compresa tra 6 e 10dBa ed è determinata dalle dimensioni dell'ambiente, dalla forma dell'ambiente e dalle caratteristiche

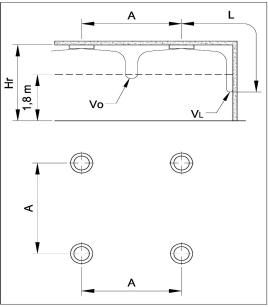
Dati ricavati da modellazione matematica CFD in camera di prova virtuale operando in accordo con la norma internazionale:

ISO 5219 1984: Air distribution and air diffusion - Laboratory. Aerodynamic testing and rating of air terminal devices.

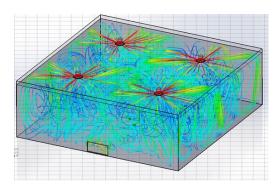

Dati ricavati da modellazione matematica CFD in camera di prova virtuale operando in condizioni di riscaldamento con $\Delta T=10^{\circ}C$ in accordo con la norma internazionale:


ISO 5219 1984: Air distribution and air diffusion - Laboratory. Aerodynamic testing and rating of air terminal devices.



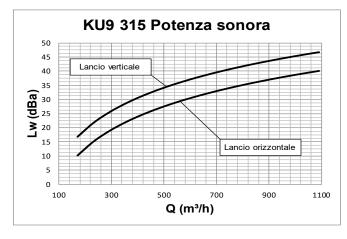

PERFORMANCE KU9 315

SERIE KU9



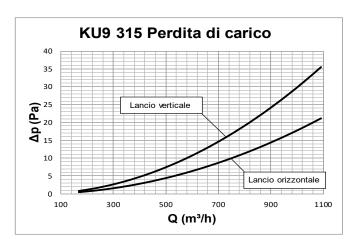
Dati ricavati da modellazione matematica CFD in camera di prova virtuale operando in condizioni isotermiche in accordo con la norma internazionale: ISO 5219 1984: Air distribution and air diffusion - Laboratory. Aerodynamic testing and rating of air terminal devices.

A (m) distanza tra i diffusori Vo (m/s) velocità al limite della zona occupata L (m) distanza orizzontale in metri dal centro del diffusore


VL (m/s) velocità massima dell'aria nella vena alla distanza L

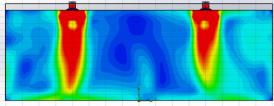
PERFORMANCE KU9 315

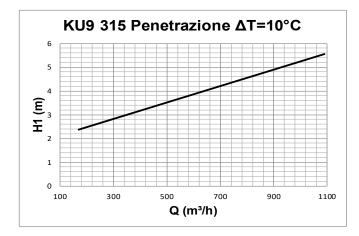
SERIE KU9



Dati misurati in camera riverberante in accordo con le norme internazionali:

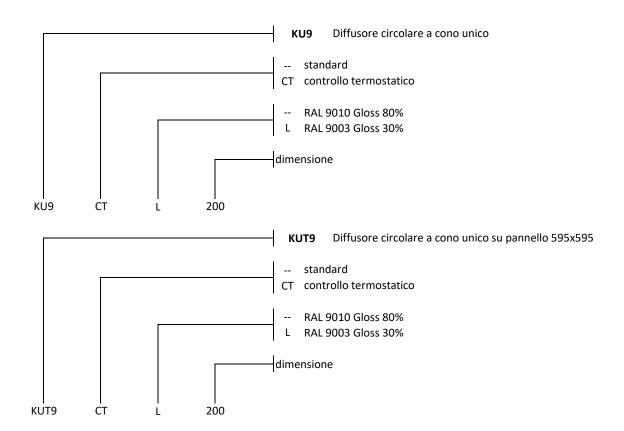
ISO 3741 1999: Acoustic - determination of sound power levels of noise sources using sound pressure - Precision methods for reverberation rooms


ISO 5135 1997: Acoustic - determination of sound power levels of noise from air-terminal devices; air terminal units; dampers and valves by measurement in a reverberation room.


I dati esposti non considerano l'attenuazione dovuta all'ambiente di installazione. Tale attenuazione è normalmente compresa tra 6 e 10dBa ed è determinata dalle dimensioni dell'ambiente, dalla forma dell'ambiente e dalle caratteristiche

Dati ricavati da modellazione matematica CFD in camera di prova virtuale operando in accordo con la norma internazionale:

ISO 5219 1984: Air distribution and air diffusion - Laboratory. Aerodynamic testing and rating of air terminal devices.


Dati ricavati da modellazione matematica CFD in camera di prova virtuale operando in condizioni di riscaldamento con $\Delta T=10^{\circ}C$ in accordo con la norma internazionale:

ISO 5219 1984: Air distribution and air diffusion - Laboratory. Aerodynamic testing and rating of air terminal devices.

SERIE KU9

COME ORDINARE

Diametri disponibili							
controllo termostatico							
160							
200							
250							
315							

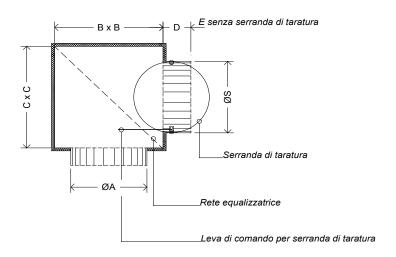
PLENUM PER DIFFUSORI CIRCOLARI

SERIE PP 60

OVERVIEW

PLENUM:

I plenum PP60 detti anche "casse di calma" consentono il corretto ingresso dell'aria nel collo del diffusore garantendo così che il lancio d'aria nell'ambiente sia omogeneo lungo tutta la circonferenza del diffusore stesso.

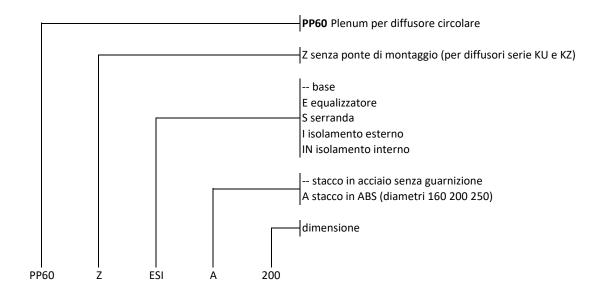

Materiali:

Plenum standard PP 60 : lamiera in acciaio zincato. Isolamento: polietilene espanso certificato per la reazione al fuoco secondo classe B-s2 d0.

Versioni:

In lamiera isolata con polietilene espanso, indicato particolarmente per la mandata dell'aria, ed in lamiera semplice normalmente utilizzato per la ripresa dell'aria. **Accessori:**

Serranda di regolazione nello stacco e rete equalizzatrice.


diametro nominale collo mm	A mm	B mm	C mm	D mm	E mm	N° di raccordi	S [mm]	materiale serranda e raccordo	
100	102	200	200	65	65	1	96	acciaio	
150	152	250	250	70	70	1	146	acciaio	
160	162	250	250	90	60	1	156	ABS (*)	
200	202	300	300	90	60	1	196	ABS (*)	
250	252	350	350	90	60	1	246	ABS (*)	
300	302	400	400	90	60	1	296	acciaio	
315	317	400	400	90	60	1	311	acciaio	

(*) acciaio a richiesta

PLENUM PER DIFFUSORI CIRCOLARI

SERIE PP 60

COME ORDINARE

